Improving Transferability of Adversarial Examples with Input Diversity
نویسندگان
چکیده
Though convolutional neural networks have achieved stateof-the-art performance on various vision tasks, they are extremely vulnerable to adversarial examples, which are obtained by adding humanimperceptible perturbations to the original images. Adversarial examples can thus be used as an useful tool to evaluate and select the most robust models in safety-critical applications. However, most of the existing adversarial attacks only achieve relatively low success rates under the challenging black-box setting, where the attackers have no knowledge of the model structure and parameters. To this end, we propose to improve the transferability of adversarial examples by creating diverse input patterns. Instead of only using the original images to generate adversarial examples, our method applies random transformations to the input images at each iteration. Extensive experiments on ImageNet show that the proposed attack method can generate adversarial examples that transfer much better to different networks than existing baselines. To further improve the transferability, we (1) integrate the recently proposed momentum method into the attack process; and (2) attack an ensemble of networks simultaneously. By evaluating our method against top defense submissions and official baselines from NIPS 2017 adversarial competition, this enhanced attack reaches an average success rate of 73.0%, which outperforms the top 1 attack submission in the NIPS competition by a large margin of 6.6%. We hope that our proposed attack strategy can serve as a benchmark for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in future. The code is public available at https://github.com/cihangxie/DI-2-FGSM.
منابع مشابه
The Space of Transferable Adversarial Examples
Adversarial examples are maliciously perturbed inputs designed to mislead machine learning (ML) models at test-time. Adversarial examples are known to transfer across models: a same perturbed input is often misclassified by different models despite being generated to mislead a specific architecture. This phenomenon enables simple yet powerful black-box attacks against deployed ML systems. In th...
متن کاملBlocking Transferability of Adversarial Examples in Black-Box Learning Systems
Advances in Machine Learning (ML) have led to its adoption as an integral component in many applications, including banking, medical diagnosis, and driverless cars. To further broaden the use of ML models, cloud-based services offered by Microsoft, Amazon, Google, and others have developed ML-as-a-service tools as black-box systems. However, ML classifiers are vulnerable to adversarial examples...
متن کاملVulnerability of Deep Reinforcement Learning to Policy Induction Attacks
Deep learning classifiers are known to be inherently vulnerable to manipulation by intentionally perturbed inputs, named adversarial examples. In this work, we establish that reinforcement learning techniques based on Deep Q-Networks (DQNs) are also vulnerable to adversarial input perturbations, and verify the transferability of adversarial examples across different DQN models. Furthermore, we ...
متن کاملDelving into Transferable Adversarial Examples and Black-box Attacks
An intriguing property of deep neural networks is the existence of adversarial examples, which can transfer among different architectures. These transferable adversarial examples may severely hinder deep neural network-based applications. Previous works mostly study the transferability using small scale datasets. In this work, we are the first to conduct an extensive study of the transferabilit...
متن کاملEvaluation of Defensive Methods for Dnns against Multiple Adversarial Evasion Models
Due to deep cascades of nonlinear units, deep neural networks (DNNs) can automatically learn non-local generalization priors from data and have achieved high performance in various applications. However, such properties have also opened a door for adversaries to generate the so-called adversarial examples to fool DNNs. Specifically, adversaries can inject small perturbations to the input data a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018